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Interchange mode in the presence of dust
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The linear and nonlinear development of an electrostatic interchange mode which involves a magnetized
nonuniform electron-ion fluid in the presence of nonuniform static charged dust grains is investigated. The
charge on grains is taken as spatially dependent, and the consequences of that condition are investigated. It is
shown that standardly accepted stabilization of the interchange mode in the presence of negatively charged
grains can be violated due to the spatial dependence of the charge on grains. Also, the ion drift, which is caused
by the action of a gravity term perpendicular to the magnetic field lines, is taken as nonuniform as a result of
the magnetic field nonuniformity, and it is shown that due to such a nonuniformity the instability condition can
be significantly modified. In the nonlinear regime several types of coherent stationary vortex structures are
found: namely, dipolar and tripolar vortices and vortex chains. The dipolar vortex is found to propagate in the
direction of the ion drift, while the tripole and vortex chains are carried by the drift flow. The spatial depen-
dence of these structures is determined by parameters describing the nonuniformity of the equilibrium plasma.
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I. INTRODUCTION

The presence of dust in space plasmas has been the
ject of many studies in the past several decades. Var
effects of dust were discussed by Spitzer in 1941@1# and in
his renowned book@2#. Particularly interesting is Ref.@1#
because it is such an early work on the matter of dusty p
mas. There, it is shown that for an electron density exceed
the value of 1023 cm23, the charge on dust grains is dete
mined by collisions with electrons rather than by the pho
electric effect, and the potential on grains is about22 V. On
the other hand, studies of wave propagation in the prese
of dust started in 1985@3#, followed by many other studies
such as Refs.@4,5#. The presence of dust in a system intr
duces some new physical phenomena, such as extrem
low-frequency modes, charge fluctuation, crystal formati
etc. In the simplest case of a wave motion, the dust is sub
to very-low-frequency sound-type oscillations@5# that are
well separated from standard plasma modes and typ
plasma frequencies.

The charge fluctuation on dust grains is another phen
enon which is absent in ordinary plasmas, but can be of g
importance in a dusty plasma. It is typically a high-frequen
process that can influence standard plasma modes. An
discussion of that effect can be found in the Spitzer’s bo
@2#, while in the theory of the propagation of waves in dus
plasmas the first studies can be found in Refs.@6,7#. Re-
cently, there have been many studies dealing with the ef
of fluctuating charge on dust grains, though one could c
clude that there are tendencies of introducing that effect
appropriately in the problems where in fact it cannot be
any influence. An analysis of that issue is done in Ref.@8#; it
is shown that the charge fluctuation is unimportant whene
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wave frequencies are much smaller or much bigger than
typical charging frequency.

For very-low-frequency processes~e.g., the interchange
or Rayleigh-Taylor mode! the charging and discharging o
grains is an ‘‘adiabatic’’ process that is insignificant for th
wave behavior. In fact, although the charge on dust grain
principle fluctuates~even in the absence of perturbations!,
for this frequency range the amount of charge on grains
average can be taken as constant. For some astrophy
conditions analytical estimates@9# show that the average
charge on a grain,̂eZd&, can be given by

^eZd&'2
1

11~t0 /t!1/2
1ct,

wheret5aT/e2<0.2, T is the plasma temperature,a is the
grain radius, the quantityt0 is the reduced temperature fo
which the ion collision rate with a negatively charged gra
with Zd521 equals the electron collision rate with a neut
grain,c is the solution to a transcedental Spitzer’s equat
@1,9#, and its values for an electron-proton and a heavy-
plasma are, respectively,22.504 and23.799. Fort'0.1,
10, 100, we havêeZd&'1,30,300, respectively. In the cas
of a magnetized plasma the motion of plasma particles a
consequently, the charging cross sections~i.e., sticking of
electrons and ions on grains! are substantially changed; i
the vicinity of a charged grain a magnetic bottle configu
tion is formed, etc. The cross sections are modified due to
image charge effect as well. More details on these effe
which are, however, not the subject of the present study,
can find in Refs.@9–11#.

The situation is quite different when the wave frequen
is comparable to the charge fluctuation frequency. Examp
of such a situation can be found in Refs.@12,13#, where these
widely separated slow and fast times scales are discuss
namely, dust acoustic and charge fluctuation time sca
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which emanate from the large inertia of the dust and from
collision with plasma particles, respectively. At fast tim
scales, it is the collective behavior of plasma particles~elec-
trons and ions! which is affected by dust charge fluctuation
The existence of an ion temperature threshold above w
the ion acoustic mode can become unstable due to the
tuation of the dust charge is demonstrated. In Ref.@12# the
effects of a fluctuating grain charge in the presence o
current-driven dust-ion-acoustic mode are investigated.
frequency and growth rate of the ion acoustic mode is sho
to be clearly influenced by the fluctuating charge. Also,
existence of a dust charge fluctuation mode in the syste
reported, and it is shown that the mode is unstable for
negative charge on dust per unit volume not exceeding s
critical value.

The Rayleigh-Taylor~or the interchange! mode is well
known from fluid dynamics and standard plasma theory
appears when a heavy fluid is supported by a lighter one;
role of the lighter fluid in plasmas can be sometimes pla
by a magnetic field. The effective interchange instability d
velops also in situations when a nonuniform fluid~or two
fluids with different densities! is ~are! accelerated in the di
rection perpendicular to the density gradient~or perpendicu-
lar to the interface of the two fluids! @14#. A similar situation
may appear in plasmas as well: as an example, in the
side part of the magnetosphere which, after a compressio
the solar wind, bounces back in the direction opposite to
gravity of planet. The instability is found to play an impo
tant role in the problems of accretion disks@15# and star
forming clouds@16#. Knowledge about the latter is based o
the recent development of observational tools~Hubble space
telescope! which reveals the existence of various fingerli
~or elephant-trunk-like! structures in large clouds~like the
Eagle Nebula!. The stability analysis of the interfaces b
tween such different media reveals the possibility for
Kelvin-Helmholtz, Rayleigh-Taylor, and Jeans instabilitie
as starting points in the process of formation of stars.

In dusty plasmas, the presence of immobile negativ
charged dust grains turns out to be stabilizing with respec
that mode, while the situation is opposite for positive
charged grains@8#. The interchange mode that develops
the dust fluid itself has been studied recently in Re
@17,18#; the studies were performed without the effect of t
charge fluctuation. The effects of dust on planetesimal
mation one can find in@19#. The Rayleigh-Taylor instability
is shown to develop in the interaction of a shock wave w
a presolar dusty nebula@20#, where basically a dense fluid i
accelerated into a less dense one, as mentioned in the
above. The instability appears first in the form of multip
clumps at the edge of the compressed material, which
afterwards driven inward in the form of fingers of the sho
material that penetrates into the cloud.

In the present work we investigate the effects of a n
uniform magnetic field on the interchange mode in
electron-ion-dust plasma. This nonuniformity should be
natural feature of any space dusty plasma. We allow also
the grain charge to be spatially dependent which is ano
natural dusty plasma feature, which in return modifies
instability condition. The presence of some gravityg term
02641
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and the nonuniform magnetic field results in a nonunifo
drift of ions. That nonuniformity turns out to play an impo
tant role in both the linear and nonlinear regimes. In t
linear regime it modifies the instability condition, while i
the nonlinear regime it is responsible for the formation o
specific type of vortical structures consisting of monopo
and quadrupolar parts. The existence of dipolar vortices
vortex chains is also discussed. The analytical solutions
corresponding physical conditions allowing for such kind
solutions are presented in detail. In Sec. II we give the mo
and basic equations describing the most unstable, i.e., pu
perpendicular, perturbations with respect to the magn
field lines. In Sec. III we discuss the interchange instabi
in the presence of a spatial nonuniformity of both the ma
netic field and the charge on dust grains. Particular nonlin
solutions are presented in Secs. IV–VI; a tripolar vort
~consisting of a monopolar and a quadrupolar part!, found in
Sec. IV, is shown to be driven by the aforesaid nonuniform
ties. A propagating dipole, presented in Sec. V, is a typi
solution in the case of a constant ion drift. A vortex cha
found in Sec. VI, turns out to be strictly determined by t
parameters describing the equilibrium nonuniformities a
similar to the tripole, it is carried by the nonuniform ion drif
At the end a summary is given.

II. MODEL AND DERIVATIONS

We start from a model which includes a nonunifor
quasineutral plasma consisting of electrons, ions, and he
dust grains, with density gradients of all plasma spec
along thex axis, so that in the equilibrium the following
conditions is satisfied:

ni0~x!5ne0~x!1Zd~x!nd0~x!. ~1!

HereZd(x) denotes the charge residing on dust grains, wh
we take as spatially dependent. This should be a real
situation for many space dusty plasma environments. As
ample, if the grains are charged due to the attachmen
electrons and ions in the process of inelastic collisions,
spatial distribution of plasma particles will influence the a
erage amount of charge on grains; in that case the grad
¹Zd and¹ne0,i0 will have more or less the same directio
On the other hand, if the charge on grains is caused by
photoeffect, i.e., by an external source, it will depend on
distance from the source and the gradients can have opp
directions. Secondary emission due to energetic~external!
plasma particles could depend on the density of the d
fluid, resulting again in oppositely oriented gradients. In o
modelZd can be positive~for negatively charged grains! and
negative~in the opposite case!.

For frequencies that are reasonably larger than the c
acteristic frequencies of the dust fluid, but less than the
gyrofrequency,

vpd ,Vd!v!V i ,

the grains can be assumed as heavy, i.e., stationary, takin
part in the motion of the perturbed fluid. Herevpd ,Vd are
the dust Langmuir and dust gyrofrequencies, respectivel
0-2
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INTERCHANGE MODE IN THE PRESENCE OF DUST PHYSICAL REVIEW E67, 026410 ~2003!
The plasma is immersed in a nonuniform magnetic fi
oriented in the positive direction of thez axis, which we
conveniently take in the form

BW 0~x!5BT

1

a~x!
eW z . ~2!

Here, the terma(x) in general describes a magnetic fie
nonuniformity in thex direction. This form is convenient fo
the present analytical study because, as will be seen,B0 en-
ters appropriate expressions in the denominators, which
therefore result in thex-dependent term in the nominators.
allows also for separating the main part from the weak s
tial dependence, which will be used in the calculations. T
gravity term, which can be a real gravity or an effective o
due to the plasma motion, is taken in the negative direc
of the x axis,gW 52geW x , whereg5const.0. Density gradi-
ents are in the direction of thex axis, ¹W nj 05nj 08 (x)eW x ,
wherenj 08 (x).0 at least for electrons and ions, which ta
part in perturbations. The prime here and in the rest of
text denotes a derivative in thex direction, andj stays for
e,i ,d.

Thus we have a geometry, presented in Fig. 1, which
lows for the interchange~or Rayleigh-Taylor! instability; it is
chosen in the form corresponding to Ref.@8#. Note that even
for necessarily growing densitiesni0 , ne0 with x, the product
Zd(x)nd0(x) in principle yields various possibilities.

The momentum equation for plasma particles is written
the form

mjnj S ]

]t
1vW j¹W D vW j5qjnj~2¹W f1vW j3BW 0!1mjnjgW 2¹pj .

~3!

In the limit of inertialess electrons, from Eq.~3! it follows
that in the equilibrium they will be subject to a drift in th
negativey direction @for a positivea(x)], given by

vW e0~x!5
Te0

ene0B0
eW z3¹W ne052a~x!

cs
2

VT

ne08

ne0
eW y ,

~4!

cs
25

Te0

mi
, VT5

eBT

mi
.

FIG. 1. The geometry of the problem.
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Similarly, for ions we have a positive drift given by

vW i0~x!5S g

VT
1

ci
2

VT

ni08

ni0
Da~x!eW y , ci

25
Ti0

mi
. ~5!

For a convenience which will be obvious in the followin
text, we shall write the ion equilibrium drift in the form

vW i0~x!5
1

BT
w8~x!eW y5

1

BT
eW z3¹W w, ~6!

wherew(x) is a stream~drift! function or an effective equi-
librium potential caused by theg term.

For the most unstable case, i.e., for electrostatic pertu
tions propagating perpendicular to the magnetic field lin
the electron motion is described approximately by

vW'e15
1

B0~x!
eW z3¹W f2

cs
2

V0
eW z3

¹W ne1

ne0
, V05

eB0

mi
. ~7!

The parallel particle motion and electromagnetic effects h
been discussed elsewhere~see Refs.@21,22#!.

We use also the continuity equation for electrons,

F ]

]t
1~vW e01vW e1!•¹W G~ne01ne1!1ne0¹W •vW e150. ~8!

A similar set of equations is written for ions:

vW' i15
1

B0~x!
eW z3¹W f1

ci
2

V0
eW z3

¹W ni1

ni0

2
1

VTBT
F ]

]t
1

1

BT
eW z3¹W ~f1w!•¹W G¹W ~f1w!,

~9!

F ]

]t
1~vW i01vW i1!•¹W G~ni01ni1!1ni0¹W •vW i150.

~10!

In writing the above expressions the equilibrium gradie
are assumed as the first-order terms, and we keep linear
nonlinear small terms up to second order.

III. LINEAR INSTABILITY

Linearized equations~7!–~10! for perturbations of the
form ẑ(x)exp(2ivt1iky), where ẑ(x) is the x-dependent
wave amplitude, with the help of the quasineutrality con
tion for the static dust grains

ne15ni1 , ~11!

yield the following quasinonlocal equation for the potent
amplitude:
0-3
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F ]2

]x2
2k22

kVTBT

ni0~v2kv0! S 1

B0
D 8S Zdnd01

v0kne0

v D
2

kVT

ni0

~Zdnd0!8

v2kv0
2

v0k2VT

v~v2kv0!

ne08

ni0
1

kv09

v2kv0
G f̂~x!

50. ~12!

Although Eq.~12! comprises the shear flow~drift! terms re-
sembling the Kelvin-Helmholtz~or Rayleigh! instability, one
should note that these terms vanish in the absence of tg
term. Therefore, the shear flow effects here cannot be stu
separately from theg effects. This is a principal difference i
comparison with some classical works dealing with sh
flow effects on the interchange instability@23#. Rather, one
should discuss the modification of the Rayleigh-Taylor~the
interchange! instability due to the nonuniformity effects
Note the terms in parentheses, multiplying the term (1/B0)8;
the first one is due to the presence of dust while the secon
the g term caused by the difference in the ion and elect
masses.

Equation~12! is nontrivial to solve in general but it can b
analyzed in various limits and for some specific given eq
librium profiles forZd(x),nd0(x),ne0(x),ni0(x),v0(x). Note
that in deriving Eq.~12! the thermal corrections have bee
omitted because they introduce only minor modifications
the instability conditions, as has been shown in Ref.@8#.

For the uniform magnetic field, and therefore const
drift v0, Eq. ~12! yields the following dispersion equation:

v21vFVT

k

@Zd~x!nd0~x!#8

ni0
2v0kG1v0VT

ne08

ni0
50.

~13!

One can follow the assumptions from Ref.@8# and take the
exponential densities

ni0~x!5Ni0exp~lx!, ne0~x!5Ne0exp~lx!, ~14!

in the case when

nd0~x!/ni0~x!5e5const. ~15!

Note that this is equivalent to the case of a spatially cons
chargeZd , which is easily seen by taking thex derivative of
the quasineutrality condition~1! and using Eqs.~14! and
~15!.

Now, in the ion reference frame from Eq.~13!, using

ne08

ni0
5S ne0

ni0
D 8

1
ne0

ni0

ni08

ni0
5~12eZd!l

and introducingV5v2v0k, we obtain

kV21V~v0k21VTelZd!1v0VTlk50, v05
g

VT
.

~16!
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Equation~16! is identical to the dispersion equation derive
in Ref. @8#. From the instability condition which follows
from Eq. ~16!,

lg.
1

4 S elVTZd

k
1kv0D 2

, ~17!

it can be seen that, in the frame of the model described
Eqs. ~14! and ~15!, the presence of negatively charged du
~positive Zd) stabilizes the system by raising the thresho
for lg above which, for a givenk, the system is unstable
The situation is opposite for positively charged grains, a
these results are known from Ref.@8#. Without dust it yields
the standard classical instability condition.

However, for a spatially nonuniform charge on grain
from Eq. ~13! one obtains the instability condition for arb
trary density profiles~with positive gradients! in the form

g
ni08

ni0
.

1

4 FVT

k

Zd8~x!nd0~x!1Zd~x!nd08 ~x!

ni0~x!
1v0kG2

.

~18!

Here we have takenne08 5(ni02Zdnd0)8 in the last term in
Eq. ~13!. Obviously the spatial dependence ofZd(x) can in
principle make the threshold lower compared to Eq.~17!, so
that the mode is destabilized even in the presence of n
tively charged grains. From physical reasons this is poss
only when the charge on grains is not mainly caused by
absorption of plasma particles; instead it should be due
some other physical mechanisms which cause the deriva
of Zd to have a negative sign, with respect to the dens
gradients. Note also that, due to the same reason, the p
velocity of the mode

v r

k
5

v0

2
2

VT

2k2

@Zd~x!nd0~x!#8

ni0~x!
, ~19!

wherev r is the real frequency, is not necessarily decrea
in the presence of negatively charged grains. Evidently,
dispersion of the mode is due to the presence of dust.

For the case of a lineara(x) and in the local limit]/]x
'kx

2!k2, from Eq.~12! one can derive the following disper
sion equation:

v21FVTZdnd0a8

ni0k
1

VT~Zdnd0!8

ni0k
2v0kGv1

v0ne0VTa8

ni0

1
v0VTne08

ni0
50, ~20!

wherev0[g/VT . The instability condition can be written in
the form

1

4 FVTZdnd0a8

ni0k
1

VT~Zdnd0!8

ni0k
1v0kG2

,gS ni08

ni0
1a8D .

~21!

Consequently, the instability condition can be substantia
modified due to the nonuniformity of the ion drift. The mod
0-4
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INTERCHANGE MODE IN THE PRESENCE OF DUST PHYSICAL REVIEW E67, 026410 ~2003!
fication is twofold. First, as it enters the left-hand side of E
~21!, for a positive gradienta8 in principle it raises the
threshold for the unstable mode similar to the effect of du
though one should note that the dust and shear drift terms
coupled and various possibilities can take place. Second
mode may become unstable even for a constant ion den
provided that the perpendicular drift gradient is bigger t
the critical value which follows from Eq.~21!. This is to
some extent similar to a classical result dealing with
streaming instability in a plasma@24#; note, however, tha
here the instability is strictly related to the presence of thg
term.

A direct comparison with Ref.@8#, regarding the spatia
dependence ofZd introduced here, cannot be done since
results in Ref.@8# are obtained for a specific case of dens
distribution, given by Eqs.~14! and~15!, which is equivalent
to a constantZd . However, the effects of the nonuniform
drift studied here can be compared with the results of R
@8#. For the profiles~14! and ~15!, the instability condition
~21! can be rewritten as

S eZda8

l
1eZd14k2D 2

,16k2S 11
a8

l D . ~22!

Here we introduce the wave numberk, normalized tok*
52VTAl/g. For a850, Eq. ~22! is identical to the corre-
sponding one from Ref.@8# for the negative charge on grain
Now, one can calculate the unstable values ofk:

k,H 1

4 S 11
a8

l D ~22eZd!1
1

2 F S 11
a8

l D 2

~12eZd!G1/2J 1/2

.

~23!

In the casea850, Eq. ~23! yields the corresponding resu
from Ref. @8# for the negative charge on grains. In the a
sence of dust it yields the well-known resultk2/4VT

2,l/g.
The threshold values ofk versuseZd are presented in Fig. 2
for two values of the drift gradienta8 in units of l, i.e., for
a850.7 ~curve 2!, and a851.3 ~curve 3!. Curve 1 corre-
sponds to the one from Ref.@8# ~the casea850). HereeZd
takes values from'0 ~a negligible presence of dust in th

FIG. 2. The threshold values ofk ~in units of k* ) versuseZd .
Here curves 1, 2, and 3 correspond toa850, a850.7, anda8
51.3, respectively. The values ofk above the corresponding curve
are stable for the given model.
02641
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plasma! to '1 ~all electrons attached to the grains!. The
valuesk above the curves are stable for the given model

Note a very important consequence of the drift nonunif
mity which follows from Eq.~21! or ~22!; namely, in the
limit a81ni08 /ni0,0 the instability vanishes. That happen
whenever the decreasing drift changes faster than the l
rithm of the increasing ion density, and this conclusion
valid generally, not only for a dusty plasma.

IV. NONLINEAR QUADRUPOLAR VORTEX

Using Eqs.~7! and~9!, the nonlinear continuity equation
~8! and ~10!, without thermal corrections, can be written a

S ]

]t
1

1

BT
eW z3¹W f•¹W D F ln ne0~x!1ne11

BT

B0~x!G50,

~24!

F ]

]t
1

1

BT
eW z3¹W ~f1w!•¹W GF ln ni0~x!1ni11

BT

B0~x!

2
1

VTBT
¹2@f1w~x!#G50. ~25!

Here the perturbed concentrationsne1 ,ni1 are normalized to
ne0 ,ni0. The nonlinearity in the above equations is of t
vector-product~or Poisson bracket! type, implying vorticity
due to the leading orderEW 3BW drift. Directly comparing typi-
cal linear and nonlinear terms in the corresponding equat
one can conclude in what situations the nonlinear terms
of importance. Hence, in Eq.~25! we make the ratio of the
following typical terms:e15eW z3¹W f•¹W ln ni0(x)/BT and e2

5eW z3¹W f•¹W ¹2f/VTBT
2 . This yields e2 /e15kLn0 k2f/

VTBT . Note that the termkLn0 is ~much! bigger than 1 as
assumed throughout the text; therefore the termse1,2 can be
of the same order even if the perturbationf is very small
~i.e., much less than the termVTBT /k2, which is, however,
dependent on the wave numberk). In the literature it is
known that such nonlinear terms can cause the formatio
quasistationary vortical structures that can propagate in
system. We shall therefore assume the existence of such
linear solutions that can develop in the process of grow
the unstable mode and search for their analytical descrip
and for the physical conditions that make such solutions p
sible. Consequently, we propose traveling solutions that
ther can be carried by the driftv0 or can propagate in the
system independently with the velocityuy in the direction of
propagation of the linear mode. Writing

]

]t
52uy

]

]y
52eW z3¹W uyx,

Eqs.~24! and~25! can be written in a proper vector-produ
form which allows for an integration, yielding the followin
expressions:

ln ne0~x!1ne11
BT

B0~x!
5 f 1~f2BTuyx!, ~26!
0-5
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ln ni0~x!1ni11
BT

B0~x!
2

1

VTBT
¹2@f1w~x!#

5 f 2~f1w2BTuyx!. ~27!

The expressions~26! and ~27! are very general asf 1(j1),
f 2(j2) are arbitrary, i.e., any functions of the given arg
ments. In order to find some specific, particular nonlin
solutions one has to specify the form of these two functio
forms. Thus, we proceed by taking a particular, in princip
piecewise linear shape of the functions as

f 1~j1!5 f 1•j1 , f 2~j2!5 f 2•j2 , ~28!

where f 1,2 are some constants which we allow to have t
different values in space. Namely, we divide the space b
circle of radiusr 0 and allow for different values of thes
constants outside and inside the circle, in the following t
denoted asf 1,2

out,in . By such a choice we keep nonlinearity
its simplest form, as that means that the functional for
f 1(j1), f 2(j2) are in fact nonlinear.

In that case from Eq.~26! one can obtain

ne15 f 1•f, ~29!

where, in order to have localized solutions forne1(r ,u) and
f(r ,u), the following condition must be satisfied:

f 1BTuyx1 ln ne0~x!1
BT

B0~x!
50. ~30!

Using the quasineutrality condition~11! we combine Eqs.
~26! and ~27! and obtain the following equation for the pe
turbed nonlinear potential:

~¹21F22F1!f1w9~x!1F2w~x!2~F22F1!BTuyx

2VTBT lnF ni0~x!

ne0~x!G50, ~31!

where F1,25 f 1,2VTBT . We shall solve Eq.~31! indepen-
dently outside and inside of the mentioned circle, and ma
the solutions smoothly atr 5r 0. From the requirement o
localized solutions, it is seen that when in the outside reg
the following condition is satisfied,

w9~x!1F2
outw~x!2~F2

out2F1!BTuyx2VTBT lnF ni0~x!

ne0~x!G
50, ~32!

from Eq. ~31! we obtain

~¹22l1
2!fout50. ~33!

Here we have introduced the notation

2l1
25F2

out2F1 ,

where, in view of the condition~30! which involves the con-
tinuous equilibrium functions, one has to takeF1 as constant
in all space. However, the nonlinearity off 2(j2) still holds.
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A particular solution of Eq.~33!, in terms of cylindrical
coordinatesr ,u, can be written as

fout~r ,u!5a0K0~l1r !1a2K2~l1r !cos 2u. ~34!

HereK0,1 are modified Bessel functions of the second kin
On the other hand, inside the circle we take

w9~x!1F2
inw~x!2~F2

in2F1!BTuyx2VTBT lnF ni0~x!

ne0~x!G
5kx2, ~35!

where, in principle,k is an arbitrary constant. The reason f
taking the right-hand side of Eq.~35! in the given form is the
following. When we combine Eqs.~32! and ~35!, the loga-
rithm terms cancel out, and the simplest form of the nonu
formity which satisfies the resulting equation is such tha
yields a linear spatial profile for the velocityv0(x), which
corresponds to the quadratic profile ofw(x). We therefore
obtain

w~x!5
~l1

21l2
2!uyBT

F2
in2F2

out
x1

k

F2
in2F2

out
x2, ~36!

i.e.,

v0~x![
g

VT
a~x!5

~l1
21l2

2!uy

F2
in2F2

out F11
2k

uyBT~l1
21l2

2!
xG .

~37!

Here we have introduced

l2
25F2

in2F1 .

One should note that fromx25r 2(11cos 2u)/2 even such a
simple nonuniform case involves quadrupolar harmon
as possible solutions. Further, in Eq.~37! we can
choose g/VT5(l1

21l2
2)uy /(F2

in2F2
out) and a(x)51

12kx/@uyBT(l1
21l2

2)#.
In this notation and on condition~35!, from Eq. ~31! we

obtain

~¹21l2
2!S f in1

k

l2
2

x22
2k

l2
4 D 50. ~38!

From the condition~30! and for an increasing electron den
sity profile, as assumed in the model, we find out that b
F1 and k must be negative, so we write them formally
F152b2, k52k1

2. Now we find the necessary electro
density distribution

ne0~x!5
1

e
expF S b2uy

VT
1

2k1
2

BT~l1
21l2

2!uy
D xG . ~39!

Note that heree is the base of the natural logarithm.
In the same notation the solution of Eq.~38! can be writ-

ten as
0-6
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f in~r ,u!52
2k1

2

l2
4

1
k1

2

2l2
2

r 21b0J0~l2r !

1Fb2J2~l2r !1
k1

2

2l2
2

r 2Gcos 2u. ~40!

HereJ0,2 are Bessel functions of the first kind.
The imposed conditions~32! and ~35! yield the corre-

sponding equilibrium profiles for the ion drift velocity an
the dust concentration, which must be satisfied in orde
have solutions~34! and ~40!. Using F2

in5l2
22b2 and F2

out

52(b21l1
2), we find

v0~x!5uy2
2k1

2

BT~l1
21l2

2!uy

x. ~41!

It is seen that the proposed traveling~with the velocityuy)
solution is in fact carried by the ion drift whose amplitude
g/VT5uy . Note also that the vortex appears for a decre
ing profile of the drift velocity. It does not appear in the ca
of a uniform drift. From Eqs.~32! and ~35! we also find

ni0~x!

ne0~x!
[11

Zd~x!nd0~x!

ne0~x!
5exp~a1x21a2x1a3!,

~42!

where

a15
b21l1

2

VTBT

k1
2

l1
21l2

2
, a252

uyb
2

VT
,

a352
2k1

2

VTBT~l1
21l2

2!
.

In the framework of the given model in the absence of d
the present solution does not appear, as can be seen from
quasineutrality conditionni0(x)5ne0(x) and Eq.~42!. How-
ever, a quadrupolar solution is possible in an electron-
plasma as well; in that case the functional forms~28! should
be taken as constant in the outside region.

The integration constantsb, l1,2, a0,2, andb0,2 and the
physical parametersk1 , r 0, and uy should be found from
appropriate physical conditions at the circler 5r 0.

The continuity off(r 0 ,u) yields

a0K0~l1r 0!52
2k1

2

l2
4

1
k1

2r 0
2

2l2
2

1b0J0~l2r 0!, ~43!

a2K2~l1r 0!5
k1

2r 0
2

2l2
2

1b2J2~l2r 0!. ~44!

The continuity of¹W f(r 0 ,u) yields

2l1a0K1~l1r 0!5
k1

2r 0

l2
2

2b0l2J1~l2r 0!, ~45!
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2
l1a2

2
@K1~l1r 0!1K3~l1r 0!#

5
k1

2r 0

l2
2

1l2b2FJ1~l2r 0!2
2

l2r 0
J2~l2r 0!G .

~46!

The functional formf 2(j2) must be continuous as it is ob
tained after one integration. This implies the continuity
¹2f(r 0 ,u) as well. Formally this condition is written as

F2
out

•@fout1w~x!2BTuyx#5F2
in
•@f in1w~x!2BTuyx#,

where we use Eq.~36! and separate the zeroth and seco
harmonics. For the zeroth harmonics this yields

a0K0~l1r 0!5
k1

2r 0
2

2~l1
21l2

2!
~47!

and, for the second,

a2K2~l1r 0!5
k1

2r 0
2

2~l1
21l2

2!
. ~48!

The meaning of these two conditions is that the circler 0 is
an isoline for the function j2(r ,u)[f(r ,u)1w(x)
2BTuyx, i.e., j2(r 0 ,u)50.

Thus one integration constant and the physical parame
will remain free, which results in a broad spectrum of pos
bilities for the tripolar vortex to appear in the given syste

The solution presented by Eqs.~34! and ~40! consists of
the monopolar and quadrupolar parts. The contour plot
such a solution is known from the literature and turns out
have a tripolar form@25# consisting of a vortex core and tw
lateral vortices with opposite vorticity. The present structu
is elongated along the magnetic field lines; it moves toget
with the ion drift, and its amplitude@see Eq.~40!# is strictly
dependent on the gradient of the ion drift.

V. DIPOLAR VORTEX

In the case of a negligible nonuniformity of the magne
field @i.e., for a constant velocityv0 and a linearx-dependent
w(x)], instead of thex2 term in the condition~35! we take
kx, which is then used to cancel the growing terms ax
→`. On the other hand, such a term in cylindrical coor
nates imposes the existence of first harmonics in the solut
i.e., x5r cosu. Using Eq.~29! andF152b2, from Eq.~31!
on conditions~30!, ~32!, and~35! ~where now instead ofkx2

we havekx) we find a particular solution in the form of
dipolar vortex

fout~r ,u!5c0K0~l1r !1c1K1~l1r !cosu, r .r 0 ,
~49!

f in~r ,u!5d0J0~l2r !1Fd1J1~l2r !2
k

l2
2

r Gcosu, r ,r 0 ,

~50!
0-7
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and the concentrationne1 is again given by Eq.~29!. Here
l1,2 are the same quantities as in Sec. IV, andc0,1 andd0,1 are
the new integration constants. In accordance with the
sumed model, which includes the increasing densities in
positivex direction, from Eqs.~30!, ~32!, and~35! we find as
earlier thatk must be negative (52k1

2) and the electron and
ion densities are given by

ne0~x!5expS b2uy

VT
xD ,

ni0~x!5ne0~x!exp~cx!5expF k1
2~b21l1

2!

VTBT~l1
21l2

2!
xG , ~51!

where

c5
k1

2~b21l1
2!

VTBT~l1
21l2

2!
2

b2uy

VT
.

From the same conditions we find that the vortex veloc
and the ion drift are related by

uy5v01
k1

2

BT~l1
21l2

2!
. ~52!

Thus, the appropriate concentrations increase withx as re-
quired, the vortex speed is larger than the ion drift, as
known from standard vortex theory, and the parameterk1
describes the difference between these two velocities.

The dipolar vortex exists in the absence of dust as well
that case from the requirement of quasineutrality this mus
c50, and we find

k1
25uyBTb2

l1
21l2

2

b21l1
2

and

uy5v0 S 11
b2

l1
2D .

It is seen that in both cases, with and without dust, the vo
velocity is larger than the constant ion drift velocityv0. The
integration constantsc0,1 andd0,1 can be found from bound
ary conditions similar to those in Sec. IV.

VI. VORTEX CHAIN

Localized solutions in the direction of equilibrium grad
ents, and periodic in the direction of the ion drift, can
obtained from Eqs.~26! and~27! by the following procedure.
We use Eq.~29! for a constantf 1 in all space, but in Eq.~27!
we take a highly nonlinear arbitrary functionf 2(j2) in the
form

f 2~j2!5 f 1•j22
1

VTBT

4c1k1
2

d1
2

expS 2
2

c1
j2D , ~53!
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j25f1w2BTuyx.

Herec1 , k1, andd1 are some integration constants, and,
earlier, we search for solutions that propagate with the ve
ity uy in the direction of the ion drift. Note that conditio
~30! still holds.

On the condition

ln ni01
BT

B0
5 f 1•~w2BTuyx!. ~54!

Equation~27! can be written as

¹2~f1w!5
4c1k1

2

d1
2

expF2
2

c1
~f1w2BTuyx!G . ~55!

One solution of Eq.~55! can be readily written in the form

f~x,y!52w~x!1BTuyx

1c1lnF2S coshk1x1A12
1

d1
2

cosk1yD G . ~56!

Note that

lim
x→6`

ln@2 cosh~k1x!#5k1uxu,

where uxu denotes the absolute value. Withoutw(x) the so-
lution ~56! represents the well-known Kelvin-Stuart-typ
vortex chain which is periodic iny, but physically inappro-
priate as it is not localized in thex direction. In the presen
case it can be localized in thex direction for the drift func-
tion w(x) satisfying

lim
x→6`

w~x!5~c1k16BTuy!uxu. ~57!

Hered1
2>1; for the cased151 periodicity iny vanishes and

Eq. ~56! transforms into a zonal flow.
Some of the integration constants in Eqs.~55! and ~56!

will be determined by the magnetic field nonuniformi
which should be given. Indeed, let us take a particular c
when the magnetic field~2! changes smoothly as

B0~x!5
BT

12a2tanhl0x

and, therefore,

v0~x!5
g

VT
~12a2tanhl0x!, ~58!

where from physical reasons one might takea2,1. From
the condition~30! we find the appropriate profile for th
electron density
0-8
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ne0~x!5
1

e
exp~a2tanhl0x1b1

2BTuyx!. ~59!

Here, in order to have an increasing profile forne0(x) we
have takenf 152b1

2. Using the definition of the drift func-
tion w(x) we find

w~x!5BTE v0~x!dx1c0

5
gBT

VT
x2

ga2BT

VTl0
ln@2~coshl0x!#. ~60!

Note here that the integration constant is taken convenie
asc05(ln 2)/l0. Now from Eq.~54! we can find the appro
priate ion concentration

ni0~x!5
1

e
expFa2tanh~l0x!1

gb1
2a2BT

l0VT
ln@2 cosh~l0x!#

1b1
2BTS uy2

g

VT
D Gx. ~61!

From Eq.~60! we see that

lim
x→6`

w~x!5S 6
gBT

VT
2

ga2BT

VT
D uxu. ~62!

Therefore, the solution~56! becomes localized inx, i.e.,
limx→6`f50, if

uy5
g

VT
~63!

and

c152
gBTa2

k1VT
. ~64!

In that case the solution~56! can be written as a dimension
less function in the form

F~x,y![
f

ga2BT

l0VT

5 ln@2 cosh~l0x!#

2
l0

k1
lnF2S cosh~k1x!1A12

1

d1
2

cos~k1y!D G .

~65!

Finally, the corresponding ion concentration profile, which
necessary for such solution, is given by

ni0~x!5
1

e
expFa2tanh~l0x!1

gb1
2a2BT

l0VT
ln@2 cosh~k1x!#G .

~66!
02641
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Hence, the structure~65! is formed at the position in thex
direction where the nonuniform ion drift velocity has th
valueg/VT and its amplitude is dependent on this value a
on the gradient of the velocitya2. The same parameters ent
the expressions for the electron and ion densities; howe
the densities are also determined by another free parameb
so that the given conditions are not too strict. Similar to t
tripolar vortex, the solution~65! is carried by the flow. The
contour plot of the vortex chain is presented in Fig. 3. He
x is the direction of the gradients and the nonuniform i
drift is in the y direction. The structure is obtained for in
creasing profiles of the ion and electron concentrations gi
by Eqs. ~59! and ~66! and an almost flat profile o
Zd(x)nd0(x). The corresponding profiles forni0(x), ne0(x),
Zd(x)nd0(x), andB0(x) are given in Figs. 4 and 5.

FIG. 3. The contour plot of the dimensionless potential of t
vortex chain analytically given by Eq.~65!. Here l050.9, k1

50.6, andd151.6.

FIG. 4. The ion~curve 1! and electron~curve 2! density profiles
given by Eqs.~59! and~66!, respectively, for the potential from Fig
3. The dash-dotted line~curve 3! is the profile ofZd(x)nd0(x). Here
a250.9 andgb2BTa2/VT50.1, and other parameters are the sa
as in Fig. 3.
0-9
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VII. SUMMARY

We have studied linear and nonlinear regimes in the
velopment of an interchange mode in a dusty plasma w
stationary dust grains and with a spatially dependent cha
on the grains. In addition, a reasonably realistic case wi
spatially dependent magnetic field, and, consequently, wi
nonuniform ion drift perpendicular to the magnetic fie
lines, is included in the study. The presence of dust, wh
enters the equations through the quasineutrality conditio
the equilibrium only and its influence on the interchan
mode have been studied earlier in Ref.@8#, resulting in the
conclusion that negatively charged grains stabilize the s
tem against the interchange instability. However, the ad
tional spatial dependence of the charge on the grains in
duces new effects and the aforesaid stabilization can
violated. Similar effects follow from the action of the non
uniformity of the ion drift.

In the nonlinear domain we have derived correspond
nonlinear equations describing perturbations that propa
perpendicular to the magnetic field. They include seve
x-dependent functions which describe the equilibrium. T
nonlinear equations comprise vector-product-type nonline
ties and can be integrated, resulting in two additional a
trary functional forms~26! and ~27! with the arguments
f(x,y)2BTuyx and f(x,y)1w(x)2BTuyx. Therefore,
various nonlinear solutions are possible, dependent on
choice of these equilibrium functions and functional form
We have found three types of stationary solutions, in
form of tripolar and dipolar vortices and vortex chains. T
dipolar vortex is shown to propagate with respect to the dr
ing plasma; two other structures are just carried by

FIG. 5. The magnetic field~curve 1! and the velocity profile
~curve 2! for the solution presented in Fig. 3.
m
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plasma flow~drift!. Both the tripole and chain are driven b
the ion drift nonuniformity~i.e., by the nonuniformity of the
magnetic field!, but they are also strictly dependent on t
equilibrium parameters describing densities.

The dust enters into the equations in the most simple w
i.e., through the quasineutrality condition~1! only. Yet it sig-
nificantly influences the mode behavior in both the linear a
nonlinear regimes. We have found analytical expressions
the equilibrium quantities which allow for the given stru
tures; see Eqs.~39!, ~41!, and ~42! for the tripole, Eq.~51!
for the dipole, and Eqs.~58!, ~59!, and ~66! ~and the corre-
sponding figures, Figs. 4 and 5! for the vortex chain. There-
fore one might say that whenever the equilibrium is d
scribed by these expressions, one should expect
formation of the given coherent structures representing p
sible saturated states of the linearly unstable intercha
mode. The conditions under which the structures are fo
look strict, yet there exist several integration constants
physical parameters that are chosen freely, implying hig
probabilities for the formation of such structures. Also, t
stationary structures follow from specific forms of the afor
said functional forms which are chosen freely@see Eqs.~28!
and~53!#. This implies a possible diversity in realistic situa
tions, which could eventually be an obstacle for clear e
dence of the present structures in some experimental stu
or in observations in space plasmas.

It should be said that tripolar vortices have been obser
in laboratory experiments with rotating fluids, where th
develop from a perturbed monopole@26#. They are shown to
be remarkably stable structures, surviving many rotations
the system. A structure of the same sort has been observ
nature as well@27# as a way of self-organization in sea wate
In plasma systems, the first analytical solution of that ty
was predicted in Ref.@28#. As for the experimental verifica
tion of the tripolar vortex in plasmas, recently it has be
obtained as a standing electrostatic global structure wh
develops due to nonlinear effects in a cylindrical laborato
plasma@29#. As for dipoles, after the early theoretical pr
diction @30#, they have been observed on many occasion
plasmas and fluids@31–34#. A dipole reported in Ref.@34# is
observed in the core of a galaxy, i.e., in a self-gravitat
medium; it is a huge structure with dimensions measured
light years. Also, chains of vortices have been observed
far in various situations in fluids@35# and plasmas@36#. Con-
sequently the solutions found in the present study are re
tic as they have been predicted and observed elsewhere
have found rather precise conditions under which they m
appear, and we believe that the present study may be use
a solid basis for some experimental or observational sear
for such structures in nonuniform dusty or nondusty plasm
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